Printed	Pages	_	4
---------	--------------	---	---

Roll No.

B. E. (Sixth Semester) Examination, 2020

(Old Scheme) and a made (a)

(Civil Engg. Branch)

STRUCTURAL ENGINEERING DESIGN-II

nice bers in Time Allowed to Three hours . A ...

Maximum Marks: 80

relade / d Minimum Pass Marks : 281 gard in

Note: Attempt all questions. Part (a) is compulsory and attempt any one from rest parts (b) and (c). Use of is IS 800 is permitted.

Unit-I

- 1. (a) What is shape factor? coasd analogentist (a) 2
 - (b) Draw stress-strain curve for mild steel and explain its salient features.

(c)	A simply supported beam of rectangular section and	
	span 'L' carries a concentrated load at the centre.	
	Find at the stage of collapse and what part of the	
	beam is fully elastic.]
	B. I. ISLAM Some II-tinU varranglion, 2020	
(a)	Define pitch and gauge.	
	(i) Write advantages and disadvantages of a welded connection.	
	(ii) Write various failures modes of a riveted joint.	1
(c)	Design a tension member of a single T-section 2.75 m long to carry an axial load of 275 kN. Design also the connection of the member of 10 mm thick	
		1
	gusset plate with 18 mm dia. rivets.	1
	(C) Discrete Dell'S RED Dependent	

2.

ошеш

- 3. (a) Define column bases.
 - (b) A column of 2.75 m effective length consists of two

channels with cover plates as shown in fig. calculate two safe axial compressive load on the column.

Take $fy = 250 \text{ N/mm}^2$.

(c) Design a slab base plate for a steel column ISHB 350 @ 67.4 kg/m, carrying a total load of 900 kN. Bearing strength of concrete may be taken as 4 N/mm²

alt old more than Unit-IV and a dominated

4. (a) Define Laterally Supported beams.

(b) A simply supported beam has an effective span of 7 m carries a Udl of 50 kN/m. Taking $fy = 250 \text{ N/mm}^2$ and $E = 2 \times 10^5 \text{ N/mm}^2$, Design the beam if it is laterally supported.

PTO

14

14

2

14

(c) Redesign the beam of above example (Q. 4 b) if it is laterally unsupported. Each end the beam is restrained against torsion and ends of the compression flanges are fully restrained against lateral bending.

14

Unit-V

5. (a) What is beam column?

2

(b) A column of effective height 6 m is subjected to an axial load of 560 kN and bending moment of 25 kN-m. The section of the column consist of ISMB 600 @ 122.6 kg/m. Check the adequacy of the section. Take C_m = 0.85.

14

(c) A beam-column of effective length of 6 m carries an axial load of 450 kN and equal and moments of 50 kN-m each about the major axis. Design the H-section of the column. Assume that the frame falls under case (b) and the column bends either in single or double curvature.

14